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Normal brain function requires interactions between spatially sepa-
rated, and functionally specialized, macroscopic regions, yet the
directionality of these interactions in large-scale functional networks
is unknown. Magnetoencephalography was used to determine the
directionality of these interactions, where directionality was inferred
from time series of beamformer-reconstructed estimates of neuronal
activation, using a recently proposed measure of phase transfer
entropy. We observed well-organized posterior-to-anterior patterns
of information flow in the higher-frequency bands (alpha1, alpha2,
and beta band), dominated by regions in the visual cortex and
posterior default mode network. Opposite patterns of anterior-to-
posterior flow were found in the theta band, involving mainly
regions in the frontal lobe that were sending information to a
more distributed network. Many strong information senders in
the theta band were also frequent receivers in the alpha2 band, and
vice versa. Our results provide evidence that large-scale resting-state
patterns of information flow in the human brain form frequency-
dependent reentry loops that are dominated by flow from parieto-
occipital cortex to integrative frontal areas in the higher-frequency
bands, which is mirrored by a theta band anterior-to-posterior flow.
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The brain is an extremely complex system (1–3) containing, at
the macroscopic scale, interconnected functional units (4)

with more-or-less specific information processing capabilities (5).
However, cognitive functions require the coordinated activity of
these spatially separated units, where the oscillatory nature of
neuronal activity may provide a possible mechanism (6–9). A com-
plete description of these interactions, in terms of both strength and
directionality, is therefore necessary for the understanding of both
normal and abnormal brain functioning.
Functional interactions may be inferred from statistical de-

pendencies between the time series of neuronal activity at dif-
ferent sites, so-called functional connectivity (10). Indeed,
interactions in large-scale functional networks have been ob-
served using Electroencephalography, Magnetoencephalography
(EEG/MEG) and functional Magnetic Resonance Imaging
(fMRI) (e.g., refs. 11–14). However, as yet, little is known about
the directionality of these interactions in large-scale functional
networks during the resting state. Estimating directionality from
fMRI is challenging due to its limited temporal resolution and
indirect relation to neuronal activity (15, 16). In contrast, EEG
studies in healthy controls have revealed a front-to-back pattern
of directed connectivity, particularly in the alpha band (17–22),
consistent with modeling studies that have shown that such patterns
may arise due to differences in the number of anatomical connec-
tions (the degree) of anterior and posterior regions (22, 23). How-
ever, modeled patterns of information flow depend on the assumed
strength of the underlying structural connections (22–24), and the
observed EEG patterns strongly depend on the choice of reference
(25), which may explain why, controversially, the reverse back-to-

front pattern has also been observed in EEG (26–28). An important
advantage of MEG over EEG in this context is that it is reference-
free. Moreover, the large number of sensors (several hundreds) in
modern whole-head MEG systems allow for sophisticated spatial
filtering approaches to accurately reconstruct time series of neuronal
activation across the cortex (29, 30). The directed functional con-
nectome can subsequently be reconstructed by estimating in-
formation flow between these time series, using either model-based
or data-driven approaches (31–34). Here, we used a recently in-
troduced, sensitive, yet computationally efficient, data-driven mea-
sure of information flow, the phase transfer entropy (PTE) (35), to
test the hypothesis that resting-state MEG data are characterized by
a dominant front-to-back pattern in the alpha band. PTE was ap-
plied to MEG source-reconstructed eyes-closed resting-state data in
a cohort of healthy subjects to characterize frequency-specific pat-
terns of information flow in the human brain.

Results
Time series of neuronal activity were reconstructed by applying an
atlas-based beamforming approach to eyes-closed resting-state
MEG data from a cohort of 67 healthy subjects. The preferred
direction of information flow between the 78 cortical regions in the
automated anatomical labeling (AAL) atlas was estimated using
the directed PTE (dPTE). The average information flow between a
region and all other regions was first computed, resulting in a single
estimate of preferred direction of information flow (outgoing or
incoming) for each region (Fig. 1). Based on this pattern, the
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integrative cognitive processing.
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posterior−anterior index (PAx) was computed to establish if there
was consistent information flow in the posterior−anterior direction.
The flow between pairs of regions was subsequently examined in
more detail (Fig. 2).
Fig. 1 reveals smooth global patterns of preferential in-

formation flow in the alpha1 (8–10 Hz), alpha2 (10–13 Hz), and
beta (13–30 Hz) bands, consisting of posterior regions that are
leading anterior regions [PAx = 0.39, 0.42, and 0.55 (P < 0.001),
respectively]. The opposite pattern was observed in the theta (4–
8 Hz) band (PAx = −0.50, P < 0.001). The patterns in the gamma
(30–48 Hz) and delta (0.5–4 Hz) bands were more dispersed
[although still significant (P < 0.001); PAx = 0.26 and −0.29,
respectively]. We describe the results for the alpha2 and theta

band in more detail below, as the patterns for these bands (i)
were most pronounced and (ii) resulted in high PAx values.
It can be seen in Fig. 2 and Tables S2 and S4 that, in the al-

pha2 band, the strongest information flow was from posterior
regions, including the (primary) visual areas and posterior parts
of the default mode network (DMN), to anterior cingulate, frontal,
and temporal regions. The 500 strongest outgoing connections all
started in precuneus, superior, middle, and inferior occipital gyrus,
calcarine fissure, cuneus, lingual gyrus, and posterior cingulate; the
areas that received most of these connections were, in rank order,
left medial superior frontal gyrus; right inferior frontal gyrus and
right anterior cingulate; right superior frontal gyrus (dorsal and
medial); left superior frontal gyrus (dorsal); and left supe-
rior frontal gyrus (medial orbital), left anterior cingulate, right

Fig. 1. Mean dPTE for each ROI displayed as a color-coded map on the parcellated template brain, viewed from, in clockwise order, the left, top, right, right
midline, and left midline. Note the smooth global patterns of preferential information flow in the higher-frequency bands (alpha1 to beta), consisting of
posterior regions that are leading anterior regions. The opposite pattern was observed in the theta band. Hot and cold colors indicate information outflow
and inflow, respectively. See Fig. S1A for the connectivity matrices.

Fig. 2. Preferred direction of information flow
between regions. (A) Preferential information flow
for the alpha2 and theta band displayed on the
template brain using BrainNet Viewer (version 1.5),
viewed from, in clockwise order, the left, top, right,
right midline, and left midline. Colors and line
thickness indicate the dPTE values (lower and upper
thresholds: [0.4892, 0.5108] and [0.4955, 0.5045] for
the alpha2 and theta bands, respectively), and ar-
rows indicate the preferred direction of information
flow. Thresholds were chosen to highlight the domi-
nant patterns formed by the information streams be-
tween regions; for statistically thresholded images, we
refer to Fig. S1B. (B) Preferential information flow for
the alpha2 and theta bands displayed as circular plots
(after ref. 22). The color of each node indicates the
mean dPTE value for that ROI. The full names of the
ROIs are given in Table S1. The nodes were grouped as
frontal lobe, central regions, parietal lobe, occipital
lobe, temporal lobe, limbic region, and Insula (Ins), with
the color of each group indicating themean dPTE value
for the group. The interior shows the connections be-
tween nodes (threshold as in A). See also Tables S2−S5.
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supramarginal gyrus, right temporal pole (superior temporal gy-
rus), and the right insula. For the theta band (Fig. 2 and Tables
S3 and S4), the pattern was more dispersed, with the strongest
and most frequent connections between frontal and temporal
regions, but also with many other regions showing (only) a few
strong connections. Out of the 500 strongest outgoing con-
nections, the outgoing connections started most frequently in
(rank-ordered) left precentral gyrus; left superior frontal gyrus
(dorsolateral); right middle frontal gyrus; left middle frontal
gyrus; left superior frontal gyrus (medial) and left supplemen-
tary motor area; right supplementary motor area; left anterior
cingulate and right superior frontal gyrus (dorsolateral); and
right anterior cingulate and the right median cingulate. The
most frequent receiving areas were right inferior temporal gy-
rus; right cuneus; left cuneus, left parahippocampal gyrus, and
right fusiform gyrus; left calcarine fissure; left inferior temporal
gyrus; left temporal pole (middle temporal gyrus); and left
superior occipital gyrus and the right inferior occipital gyrus.
Note that some of the most frequent sending regions in the
alpha2 band tended to be frequent receivers in the theta band
(Table S5). A similar effect, although less pronounced, was
seen for the most frequent sending regions in the theta band:
These were also often frequent receivers in the alpha2 band.
Indeed, there was a significant negative correlation between the
upper triangles of the dPTE matrices (Fig. S1A) in the alpha2
and theta band [r(3,001) = −0.57, P < 0.001].
To aid the interpretation of our results, we performed several

extra analyses, which are described in Supporting Information: We
compared results obtained for the eyes-closed condition to those
obtained for the eyes-open condition, revealing similar patterns of
information flow (Fig. S2). Similarly, these patterns, albeit with
lower spatial resolution, were also found at the sensor level (Fig.
S3), confirming that the observed patterns were not an artifact of
the source reconstruction approach. In addition, we compared
dPTE to another directional measure, the directed Phase Lag
Index (dPLI) (23), which is based on phase differences rather than
information flow (Fig. S4). Importantly, we also showed that these
patterns of phase differences in a toy system of coupled Rössler
oscillators depend on the global strength of the underlying struc-
tural connections, whereas dPTE revealed the correct patterns of
information flow, independent of the coupling strength (Fig. S5).
Finally, we estimated the relation between relative power
and dPTE, as well as the effect of the choice of beamformer
approach (Fig. S6).

Discussion
We have demonstrated, for the higher-frequency bands (8−30 Hz),
dominant posterior-to-anterior patterns of information flow in an
eyes-closed resting state from regions in the parieto-occipital lobe
toward frontal areas. In contrast, a pattern of anterior-to-posterior
flow was found in the theta band, involving mainly regions in the
frontal lobe that were sending information to a more distributed
network. Interestingly, strong senders of information in the alpha2
band were also often receivers of information in the theta band,
and vice versa, suggesting a frequency-specific loop of information
flow in the human brain.
Posterior regions of the DMN were found to be strong senders

of information in the higher-frequency bands (8−30 Hz), and fre-
quent receivers in the theta band. The DMN is strongly activated
during the resting state (see also Fig. S6B), and has putatively been
linked to spontaneous cognition (internal mentation) and/or gen-
eral unconscious low-level attention to the external world (36, 37).
At least two distinct interacting subsystems play a role in the DMN:
one temporal system involved in memory processes, and a fronto-
parietal system involved in self-relevant mental simulations (36).
Our observation of a dominant posterior-to-anterior pattern of
information flow in the higher-frequency bands between parieto-
occipital regions and frontal regions, as well as an anterior-to-

posterior pattern from frontal regions to temporal and posterior
regions in the theta band, suggests that these subsystems form a
loop (Table S5), or cell assembly (38, 39), through which in-
formation “reverberates” or “circulates.” The observation that the
theta band is important for memory processes in frontal and hip-
pocampal areas further supports this idea (40, 41). A counterar-
gument against such interpretations of our results is our observation
that not only the posterior part of the DMN is involved in the
posterior-to-anterior flow, but also, and most strongly, regions in
the visual cortex. Therefore, the interpretation of the current
findings can also be placed in a broader context, superseding the
sole role of the DMN with respect to the observed patterns. The
observation of a mirrored flow of information is reminiscent of
reentry in neural systems as a mechanism for integration of brain
function (42).
Recent hypotheses have stressed the importance of both alpha

and theta connectivity in attention, where theta band connectivity
from the medial frontal cortex to various regions plays a key role in
inducing control from higher association areas over lower-level,
perceptual processes, but also over the DMN (43). Our theta band
findings seem to be in line with this theory, as it may explain why
we found distributed theta band information flow from frontal
areas to various regions, including the DMN. At the same time, this
model predicts that anterior-to-posterior alpha connectivity pro-
vides a gating mechanism for attention, because top-down modu-
lation by alpha could inhibit irrelevant activity (43, 44). This may
seem to be in disagreement with our findings of a posterior-to-
anterior dominant pattern of information flow in the alpha band,
although it is possible that the enhanced bottom-up signaling in the
alpha band is in itself a consequence of enhanced top-down sig-
naling in the theta band (45). Moreover, one should take into
consideration that our recordings were resting state and not task-
based, and that neuronal signatures of different forms of attention
(46) are assumed to be related but can have different spatiotem-
poral and frequency contents. The observed posterior-to-anterior
information flow during the resting state is likely to be a signature
for internal attention rather than for attention to external stimuli
[also supported by our finding that opening the eyes during the
resting state did not alter the dominant patterns of information
flow (Fig. S2)]. These ideas could be tested in future task-based
studies, where the exact role and direction of fronto-posterior
connections could be analyzed for different forms of attention.
Alternatively, the oppositely directed propagated electrophysio-

logical activity in different frequency bands could play a role in
contexts other than attention (47), such as memory consolidation
(48). Our results (Fig. 2) are, for example, consistent with animal
recordings that have shown cortico-hippocampal propagation at
low frequencies and cortico-cortical propagation at higher fre-
quencies (49). Similarly, bottom-up and top-down influences
through distinct fast- and slow-frequency channels have also
been reported for the visual system (45, 50). Although these
observations from task-based invasive animal recordings sug-
gest that similar mechanisms may play a role during noninvasive
resting-state recordings in humans, more work is needed to further
elucidate the functional role of resting-state information flow
through distinct frequency channels.
An alternative explanation for the observed stable patterns of

information flow may come from the topological properties of
the underlying structural network, as recent modeling work has
suggested. In particular, highly connected regions in the network,
so-called hubs, become phase-lagging with respect to nonhub regions
(22, 23). Brain networks have their strongest hubs in posterior regions
(36, 51), which would hence lead to a front-to-back pattern of phase
differences. However, simply changing the global strength of the
underlying structural connections may reverse this pattern (Fig. S5),
indicating that patterns of phase differences should not be confused
with patterns of directed connectivity or, indeed, information flow.
Instead, one could hypothesize that the net outflow of information
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from posterior regions is due to an increase in encoded information
at higher firing rates (52), as simulations have shown that hubs also
possess the highest levels of neuronal activity in the network, that
is, the highest firing rates (53) and the highest power (22, 53).
Another factor that may have contributed to the discrepancy

between our observed posterior-to-anterior pattern in the alpha
band and the reverse pattern that was hypothesized on the basis
of previous EEG studies in healthy subjects (refs. 17–22, but see
refs. 26–28) is that the patterns of directionality in EEG strongly
depend on the choice of reference (25). MEG, in contrast, is
reference-free. Interestingly, we did not observe any consistent
patterns of phase differences between anterior and posterior
regions in any of the frequency bands in our source-recon-
structed MEG data (Fig. S4). Finally, the artifact caused by the
electrocardiogram (ECG) can cause consistent patterns of phase
differences at the sensor level (54), because the artifact can be
modeled as a rotating source (55). Application of beamforming
not only allows for the reconstruction of information flow at the
cortical level but also removes the ECG artifact (55), especially
in combination with temporal extension of Signal Space Sepa-
ration (tSSS) (56).
We observed a strong positive correlation between the patterns

of dPTE and those of relative power [dPTE Versus Relative Power
(Centroid Beamformer)], particularly for the alpha bands. It is
therefore possible that the observed patterns of information flow
are a direct consequence of differences in signal-to-noise ratio
(SNR) between anterior and posterior regions, although the strong
negative correlation between dPTE and relative power in the
gamma band shows, at least, that this would not always be the case.
Moreover, PTE is based on phase information and should there-
fore be relatively insensitive to differences in power or SNR (ref.
35, but see ref. 57). In addition, in our Rössler simulations (Fig. S5),
there was a consistent pattern of information flow that did not de-
pend on power differences. Furthermore, patterns of information
flow observed in the experimental data for the eyes-open condition,
i.e., when occipital alpha has low power, were similar to those
obtained for the eyes-closed condition. Finally, modeling work sug-
gests that the relationship between power and directionality may not
simply be caused by differences in SNR but may be due to a neuronal
mechanism that drives this correlation (52). Akam and Kullmann
(52) showed that the amount of synchronous activity in a sending
neuronal population, reflected in the amplitude of oscillations, is
strongly related to the amount of information available to the re-
ceiving neuronal population. At the same time, interneuron motifs
within the receiving neuronal population can act as bandpass filters to
selectively gate incoming signals. This selective signal-gating mecha-
nism could explain the strong positive correlation between amplitude
and dPTE in our study, but it also explains why this correlation is
not perfect, as the amplitude of the sending population itself is not
the only prerequisite for routing information: There is also the
sensitivity of receiving populations. However, given the mesoscopic
level at which the analysis was performed and the infancy of this
field, future modeling approaches need to include the influence of
global structural topology (22–24) and inhomogeneity of neuronal
populations to systematically study how patterns of information
flow depend on frequency, power, SNR, and the role of regions
within the network. Moreover, experimental studies should in-
vestigate if, and how, these patterns of information flow optimize
integrative cognitive processing. An interesting hypothesis is, for
example, that interruptions in the alpha−theta circular flow of in-
formation lead to poorer cognition.
Our results give direction to future studies on information flow

in the human brain. Here, we analyzed the different frequency
bands separately, and found posterior-to-anterior flow of in-
formation in the higher-frequency bands (alpha1, alpha2, and beta
band), and anterior-to-posterior flow in the theta band, where
some regions were frequent senders in one frequency band and
frequent receivers in other frequency bands. Cross-frequency

interactions, i.e., information flow across different frequency
bands, were not studied directly, and our interpretation of the
results in terms of a reentry loop of information flow should be
accepted provisionally. Such cross-frequency interactions could
be studied by applying the PTE to data filtered in different fre-
quency bands for the senders and receivers (35). In addition, we
only estimated information flow for relatively long time windows,
such that we could not establish whether a single region switched
from a sending to receiving state on short time scales or whether
a region was simultaneously a sender in one frequency band and
a receiver in another, consistent with the idea of oscillatory
multiplexing for selective communication (58). This could be
addressed by developing a dynamic dPTE approach.
Our approach, a combination of an atlas-based beamformer

and PTE, revealed stable frequency-specific patterns of in-
formation flow in the healthy human brain. Future work should
investigate how these patterns are disrupted in neurological
disease, and how these disruptions relate to disease severity and
cognitive performance.

Methods
Participants and Recording Protocol. Data from 67 healthy controls were
analyzed. These data formed part of two cohorts in studies on Multiple
Sclerosis (MS) at the VU University Medical Center (VUmc) MS Center (59–61),
for which approval was obtained from the Medical Ethical Review Com-
mittee of VUmc, whose ethics review criteria conformed to the Helsinki
declaration. All subjects gave written informed consent before participation.

Anatomical images of the head were obtained on a 3.0T whole-body MRI
scanner (GE Signa HDxt), using a 3D T1-weighted fast spoiled gradient echo
sequence [repetition time (TR) 7.8 ms, echo time (TE) 3 ms, inversion time (TI)
450 ms, 12° flip angle (FA), sagittal 1.0-mm-thick slices, 0.94 × 0.94 mm in-
plane resolution].

MEG data were recorded using a 306-channel whole-head system (Elekta
Neuromag Oy) while participants were in a supine position in a magnetically
shielded room (Vacuumschmelze). Data were recorded during no-task eyes-
open (3 min) and eyes-closed (5 min) conditions, using a sample frequency of
1,250 Hz and online anti-aliasing (410 Hz) and high-pass (0.1 Hz) filters. The
head position relative to the MEG sensors was recorded continuously
using the signals from four head localization coils. The head localization
coil positions were digitized, as was the outline of the participants scalp
(∼500 points), using a 3D digitizer (Fastrak; Polhemus).

Channels that were malfunctioning, for example due to excessive noise,
were identified by visual inspection of the data (mean number of excluded
channels was six, range 2–11), and removed before applying the tSSS in
MaxFilter software (version 2.2.15; Elekta Neuromag Oy) (56). The tSSS filter
was used to remove artifacts that SSS without temporal extension would fail
to discard, typically from noise sources near the head, using a subspace
correlation limit of 0.9 and a sliding window of 10 s.

The scalp surfaces of all subjects were coregistered to their structural MRIs
using a surface-matching procedure, with an estimated resulting accuracy of
4 mm (62). A single sphere was fitted to the outline of the scalp as obtained
from the coregistered MRI, which was used as a volume conductor model for
the beamformer approach described in Beamforming.

Beamforming. An atlas-based beamformer approach was adopted to project
MEG data from sensor level to source space (14). First, the coregisteredMRI was
spatially normalized to a template MRI using the New Segment toolbox in
SPM8 (63). The AAL atlas was used to label the voxels in a subject’s normalized
coregistered MRI (64). Subcortical structures were removed, as MEG is most
sensitive to cortical regions (65), and the voxels in the remaining 78 cortical
regions of interest (ROIs) were used for further analysis (66), after inverse
transformation to the patient’s coregistered MRI. Next, neuronal activity in the
labeled voxels was reconstructed using a scalar beamformer implementation
(beamformer, version 2.1.28; Elekta Neuromag Oy) similar to Synthetic Aper-
ture Magnetometry (67).

This beamformer sequentially reconstructs the activity for each voxel in a
predefined grid covering the entire brain (spacing 2mm) by selectivelyweighting
the contribution from eachMEG sensor to a voxel’s time series. The beamformer
weights are based on the data covariance matrix and the forward solution (lead
field) of a dipolar source at the voxel location (30, 67, 68). A time window of, on
average, 287 s (range 139–394 s) was used to compute the data covariance
matrix. Singular value truncation was used when inverting the data covariance
matrix to deal with the rank deficiency of the data after SSS (∼70 components).
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Each ROI in the atlas contains many voxels, and the number of voxels per
ROI differs. To obtain a single time series for an ROI, we used each ROI’s
centroid as representative for that ROI, with the centroid defined here as the
voxel within the ROI that is nearest, in terms of Euclidean distance, to all
other voxels in the ROI [see Fig. S6 and Table S6 for comparison with an
approach based on selection of the voxel with maximum activation (14)].

The broadband (0.5–48 Hz) time series were projected through the normal-
ized (69) broadband beamformer weights for each target voxel (i.e., centroid) to
obtain a time series for an ROI. From these time series, the first 20 artifact-free
epochs, containing 4,096 samples (3.2768 s), were selected to obtain stable re-
sults (70). These time series were then filtered in classical EEG/MEG frequency
bands [delta (0.5–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), beta
(13–30 Hz), and lower gamma (30–48 Hz)], using an offline discrete fast Fourier
transform filter that does not distort the phases (BrainWave, version 0.9.150.6;
home.kpn.nl/stam7883/brainwave.html). Subsequently, the instantaneous phase
for each time series was computed by taking the argument of the analytic signal
as computed using the Hilbert transform (see e.g., ref. 71 for details).

PTE. The information flowbetweenROIswas estimatedusing the PTE,whichhas
recently been introduced by Lobier et al. (35). PTE is based on the same principle
as Wiener−Granger Causality, namely that a source signal has a causal influ-
ence on a target signal if knowing the past of both signals improves the ability
to predict the target’s future compared with knowing only the target’s past
(72, 73). In the framework of Information Theory, this can best be understood
in terms of uncertainty: A source signal has a causal influence on a target signal
if the uncertainty of the target signal conditioned on both its own past and
that of the source signals is smaller than the uncertainty of the target signal
conditioned only on its own past. If the uncertainty of a target signal Y at a
delay δ is expressed in terms of Shannon Entropy (74), then the Transfer En-
tropy (TE) from source signal X to target signal Y can be expressed as (75)

TExy =
X

pðYt+δ,Yt,XtÞlog
�
pðYt+δjYt, XtÞ
pðYt+δjYtÞ

�
[1]

where the definition for Shannon Entropy (74), HðYt+δÞ= −
P

pðYt+δÞlogpðYt+δÞ,
was used, and the sum runs over all discrete time steps t.

For observed data, estimation of the probabilities in Eq. 1 is time-con-
suming and requires fine-tuning of several parameters (76). To solve these
problems, Staniek and Lehnertz proposed to estimate transfer entropy by
converting observed time series into sequences of symbols (77). In the same
spirit, time series can be described in terms of their amplitudes and in-
stantaneous phases (78), following which transfer entropy can be estimated
from the time series of the instantaneous phases (PTE), at low computa-
tional cost (35). Dropping the subscript t for clarity, and using the fact that
p(Yδ,Y) = p(Yδ) p(Y), the PTE becomes

PTExy =
X

pðYδÞpðYÞpðXÞlog
�
pðYδjY,XÞ
pðYδjYÞ

�
[2]

where the probabilities are obtained by building histograms of occurrences of
single, pairs or triplets of phase estimates in an epoch (35). The number of

bins in the histograms was set as e0.626+0.4 lnðNs−δ−1Þ (78), and the prediction
delay δ was set as (Ns x Nch)/N±, with Ns and Nch the number of samples and
channels (ROIs), respectively, and N± the number of times the phase changes
sign across time and channels.

Finally, because the PTE does not have ameaningful upper bound (35), and
to reduce biases, i.e., the effect of having (small) nonzero PTE values in
situations when there is no actual information flow, we normalized the PTE,

dPTExy =
PTExy

PTExy +PTEyx
. [3]

The value of dPTExy ranges between 0 and 1. When information flows
preferentially from time series X to time series Y, 0.5 < dPTExy ≤ 1. When
information flows preferentially toward X from Y, 0 ≤ dPTExy < 0.5. In the
case of no preferential direction of information flow, dPTExy = 0.5.

It should be noted that our implementation differs slightly from Lobier
et al. (35) in the way the number of bins, the prediction delay, and the
normalization were computed. However, Lobier et al. showed that dPTE is
robust against the a priori choice of the prediction delay, or the method
used to construct the (conditional) probability distributions, and these dif-
ferences in implementation should therefore not have affected our results.

Statistical Analysis. For each frequency band and subject separately, the dPTE
matrices were averaged over the 20 epochs, yielding one matrix per subject.
These were then averaged over subjects. The average dPTE value was sub-
sequently computed for each ROI; that is, the average preferred direction of
information flow for a region was also computed.

To establish if there was a consistent pattern of information flow, a PAx
was computed as follows:

PAx=
n
dPTExy

o
posterior

−
n
dPTExy

o
anterior

[4]

where the dPTE was averaged over a set of posterior and anterior regions,
respectively (see Table S1). A positive PAx indicates preferential flow from
posterior regions toward anterior regions, and negative PAx preferential flow
from anterior regions toward posterior regions. PAx was normalized by the
absolute maximum PAx value that could have been obtained with the dPTE
values for these individual ROIs. Significance of the PAx was assessed using
randomization testing, where the average dPTE values were permuted across
the ROIs, after which the PAx was computed. This was repeated 5,000 times to
build a distribution of surrogate PAx values against which the observed PAx
was tested (P < 0.05).
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